§Q®`§Q®`......±Ð§A¬°¦ó1+1=2
¦³¤£¤Ö¤H³£¥i¯à´¿¸g°Ý¹L"¬°¦ó1+1=2¡H"³oӬݦü¦h¾l(?)ªº°ÝÃD¡C²{¦b§Ú¹Á¸Õ¦V¦³¿³½ìªººô¤Í²³æ¤¶²Ð¤@¤U«ç¼Ë¦b¤½²z¶°¦X½×ªº®Ø¬[¤ºµý©ú "1+1=2" ³o¥y¹ïµ´¤j¦h¼Æ¤H¨Ó»¡³£"ÄA¼³¤£¯}"ªº¼Æ¾Çz¥y¡Cº¥ý¡A¤j®anª¾¹D¦b¶°¦X½×ªº¯ßµ¸¤¤§ÚÌ°Q½×ªº¹ï¶H¬O¦U¦¡¦U¼Ëªº¶°¦X¡]©ÎÃþ (class)¡A¥¦Ì©M¶°¦Xªº¤À§O¦b¦¹¤£ÂØ¡^¡A¬G¦¹§Ú̸g±`¸I¨ìªº¦ÛµM¼Æ¦b³o¸Ì¤]¬O¥H¶°¦X¡]©ÎÃþ¡^¨Ó©w¸q¡C¨Ò¦p§ÚÌ¥i¥Î¥H¤Uªº¤è¦¡¬É©w0¡A1©M2(eg. qv. Quine, Mathematical Logic, Revised Ed., Ch. 6, ¡±43-44)¡G
0 := {x: x ={y: ~(y = y)}}
1 := {x: y(y£`x.&.x\{y}£`0)}
2 := {x: y(y£`x.&.x\{y}£`1)}
¡e¤ñ¦p»¡¡A¦pªG§Ú̱q¬YÓÄÝ©ó¢°³oÓÃþªº¤À¤l®³¥h¤@Ó¤¸¯Àªº¸Ü¡A¨º»ò¸Ó¤À¤l«K·|Åܦ¨0ªº¤À¤l¡C´«¨¥¤§¡A¢°´N¬O¥Ñ©Ò¦³¥u¦³¤@Ó¤¸¯ÀªºÃþ²Õ¦¨ªºÃþ¡C¡f
²{¦b§Ṳ́@¯ë±Ä¥Î¥Dn¥Ñ von Neumann ¤Þ¤Jªº¤èªk¨Ó¬É©w¦ÛµM¼Æ¡C¨Ò¦p¡G
0:= £N, 1:= {£N} = {0} =0¡å{0},
2:= {£N,{£N}} = {0,1} = 1¡å{1}
[£N¬°ªÅ¶°]
¤@¯ë¨Ó»¡¡A¦pªG§Ṳ́w¸gºc§@¶°n, ¨º»ò¥¦ªº«áÄ~¤¸(successor) n* ´N¬É©w¬°n¡å{n}¡C
¦b¤@¯ëªº¶°¦X½×¤½²z¨t²Î¤¤¡]¦pZFC¡^¤¤¦³¤@±ø¤½²z«OÃÒ³oÓºc§@¹Lµ{¯à¤£Â_¦a©µÄò¤U¥h¡A¨Ã¥B©Ò¦³¥Ñ³oºc§@¤èªk±o¨ìªº¶°¦X¯àºc¦¨¤@Ó¶°¦X¡A³o±ø¤½²zºÙ¬°µL½a¤½²z(Axiom of Infinity)(·íµM§ÚÌ°²©w¤F¨ä¥L¤@¨Ç¤½²z¡]¦p¨Ã¶°¤½²z¡^¤w¸g«Ø¥ß¡C
¡eª`¡GµL½a¤½²z¬O¤@¨Ç©Ò¿×«DÅ޿誺¤½²z¡C¥¿¬O³o¨Ç¤½²z¨Ï±o¥HRussell ¬°¥NªíªºÅÞ¿è¥D¸q¾Ç¬£ªº¬Y¨Ç¥D±i¦b³ÌÄY®æªº·N¸q¤U¤£¯à¹ê²{¡C¡f
¸òþÓ§ÚÌ«K¥iÀ³¥Î¥H¤Uªº©w²z¨Ó©w¸qÃö©ó¦ÛµM¼Æªº¥[ªk¡C
©w²z¡G©R"|N"ªí¥Ü¥Ñ©Ò¦³¦ÛµM¼Æºc¦¨ªº¶°¦X¡A¨º»ò§ÚÌ¥i¥H°ß¤@¦a©w¸q¬M®gA¡G|N£A|N¡÷|N¡A¨Ï±o¥¦º¡¨¬¥H¤Uªº±ø¥ó¡G
(1)¹ï©ó|N¤¤¥ô·Nªº¤¸¯Àx¡A§Ú̦³A(x,0) = x ¡F
(2)¹ï©ó|N¤¤¥ô·Nªº¤¸¯Àx©My¡A§Ú̦³A(x,y*) = A(x,y)*¡C
¬M®gA´N¬O§Ú̥Ψөw¸q¥[ªkªº¬M®g¡A§ÚÌ¥i¥H§â¥H¤Wªº±ø¥ó«¼g¦p¤U¡G
(1) x+0 = x ¡F(2) x+y* = (x+y)*¡C
²{¦b¡A§ÚÌ¥i¥Hµý©ú"1+1 = 2" ¦p¤U¡G
1+1
= 1+0* (¦]¬° 1:= 0*)
= (1+0)* (®Ú¾Ú±ø¥ó(2))
= 1* (®Ú¾Ú±ø¥ó(1))
= 2 (¦]¬° 2:= 1*)
¡eª`¡GÄY®æ¨Ó»¡§ÚÌn´©¥Î»¼Âk©w²z(Recursion Theorem)¨Ó«OÃÒ¥H¤Wªººc§@¤èªk¬O§´·íªº¡A¦b¦¹¤£ÂØ¡C]
1+ 1= 2"¥i¥H»¡¬O¤HÃþ¤Þ¤J¦ÛµM¼Æ¤Î¦³Ãöªº¹Bºâ«á"¦ÛµM"±o¨ìªºµ²½×¡C¦ý±q¤Q¤E¥@¬ö°_¼Æ¾Ç®a¶}©l¬°«Ø°ò©ó¹ê¼Æ¨t²Îªº¤ÀªR¾Ç«Ø¥ßÄY±KªºÅÞ¿è°ò¦«á¡A¤H̤~¯u¥¿¼fµøÃö©ó¦ÛµM¼Æªº°ò¦°ÝÃD¡C§Ú¬Û«H³o¤è±³Ì"¸g¨å"ªºµý©úÀ³nºâ¬O¥X²{¦b¥ÑRussell©MWhitehead¦XµÛªº"Principia Mathematica"¤¤ªº¨ºÓ¡C
§ÚÌ¥i¥H³o¼Ëµý©ú"1+1 = 2"¡G
¡@º¥ý¡A¥i¥H±Àª¾¡G
£\£`¢°<=> (£Ux)(£\={x})
£]£`2 <=> (£Ux)(£Uy)(£]={x,y}.&.~(x=y))
£i£`1+1 <=> (£Ux)(£Uy)(£]={x}¡å{y}.&.~(x=y))
©Ò¥H¹ï©ó¥ô·Nªº¶°¦X£^¡A§Ú̦³
¡@£^£`1+1
<=>(£Ux)(£Uy)(£^={x}¡å{y}.&.~(x=y))
<=>(£Ux)(£Uy)(£^={x,y}.&.~(x=y))
<=> £^£`2
®Ú¾Ú¶°¦X½×ªº¥~©µ¤½²z(Axiom of Extension)¡A§Ú̱o¨ì1+1 = 2¡C]
The proof starts from the Peano Postulates, which define the natural numbers N. N is the smallest set satisfying these postulates:
P1. 1 is in N.
P2. If x is in N, then its "successor" x' is in N.
P3. There is no x such that x' = 1.
P4. If x isn't 1, then there is a y in N such that y' = x.
P5. If S is a subset of N, 1 is in S, and the implication
(x in S => x' in S) holds, then S = N.
Then you have to define addition recursively:
Def: Let a and b be in N. If b = 1, then define a + b = a'
(using P1 and P2). If b isn't 1, then let c' = b, with c in N
(using P4), and define a + b = (a + c)'.
Then you have to define 2:
Def: 2 = 1'
2 is in N by P1, P2, and the definition of 2.
Theorem: 1 + 1 = 2
Proof: Use the first part of the definition of + with a = b = 1.
Then 1 + 1 = 1' = 2 Q.E.D.
Note: There is an alternate formulation of the Peano Postulates which replaces 1 with 0 in P1, P3, P4, and P5. Then you have to change the definition of addition to this:
Def: Let a and b be in N. If b = 0, then define a + b = a.
If b isn't 0, then let c' = b, with c in N, and define
a + b = (a + c)'.
You also have to define 1 = 0', and 2 = 1'. Then the proof of the
Theorem above is a little different:
Proof: Use the second part of the definition of + first:
1 + 1 = (1 + 0)'
Now use the first part of the definition of + on the sum in
parentheses: 1 + 1 = (1)' = 1' = 2 Q.E.D.
================================
|