¹p¹F³¡«Î½×¾Â - ­»´ä°Q½×°Ï ! ¹q¥x¸ê°Tªº½×¾Â


 
¼ÐÃD: §Q®`§Q®`......±Ð§A¬°¦ó1+1=2
¹p¹F
ºÞ²z­û
Rank: 10Rank: 10Rank: 10
©O¨ì§Ú¸Ü¨Æ¬J¡I­ø¶¶§r¡H


UID 3
ºëµØ 8
¿n¤À 12151
©«¤l 5516
²{ª÷ 49788
¦s´Ú 8901
¾\ŪÅv­­ 255
µù¥U 2005-3-1
¨Ó¦Û ¤EÀs
ª¬ºA Â÷½u
µoªí©ó 2006-4-4 10:05  ¸ê®Æ ¥D­¶ ¤å¶° µu®ø®§  ICQ ª¬ºA
§Q®`§Q®`......±Ð§A¬°¦ó1+1=2

¦³¤£¤Ö¤H³£¥i¯à´¿¸g°Ý¹L"¬°¦ó1+1=2¡H"³o­Ó¬Ý¦ü¦h¾l(?)ªº°ÝÃD¡C²{¦b§Ú¹Á¸Õ¦V¦³¿³½ìªººô¤Í²³æ¤¶²Ð¤@¤U«ç¼Ë¦b¤½²z¶°¦X½×ªº®Ø¬[¤ºµý©ú "1+1=2" ³o¥y¹ïµ´¤j¦h¼Æ¤H¨Ó»¡³£"ÄA¼³¤£¯}"ªº¼Æ¾Ç­z¥y¡C­º¥ý¡A¤j®a­nª¾¹D¦b¶°¦X½×ªº¯ßµ¸¤¤§Ú­Ì°Q½×ªº¹ï¶H¬O¦U¦¡¦U¼Ëªº¶°¦X¡]©ÎÃþ (class)¡A¥¦­Ì©M¶°¦Xªº¤À§O¦b¦¹¤£ÂØ¡^¡A¬G¦¹§Ú­Ì¸g±`¸I¨ìªº¦ÛµM¼Æ¦b³o¸Ì¤]¬O¥H¶°¦X¡]©ÎÃþ¡^¨Ó©w¸q¡C¨Ò¦p§Ú­Ì¥i¥Î¥H¤Uªº¤è¦¡¬É©w0¡A1©M2(eg. qv. Quine, Mathematical Logic, Revised Ed., Ch. 6, ¡±43-44)¡G 0 := {x: x ={y: ~(y = y)}} 1 := {x: y(y£`x.&.x\{y}£`0)} 2 := {x: y(y£`x.&.x\{y}£`1)} ¡e¤ñ¦p»¡¡A¦pªG§Ú­Ì±q¬Y­ÓÄÝ©ó¢°³o­ÓÃþªº¤À¤l®³¥h¤@­Ó¤¸¯Àªº¸Ü¡A¨º»ò¸Ó¤À¤l«K·|Åܦ¨0ªº¤À¤l¡C´«¨¥¤§¡A¢°´N¬O¥Ñ©Ò¦³¥u¦³¤@­Ó¤¸¯ÀªºÃþ²Õ¦¨ªºÃþ¡C¡f ²{¦b§Ú­Ì¤@¯ë±Ä¥Î¥D­n¥Ñ von Neumann ¤Þ¤Jªº¤èªk¨Ó¬É©w¦ÛµM¼Æ¡C¨Ò¦p¡G 0:= £N, 1:= {£N} = {0} =0¡å{0}, 2:= {£N,{£N}} = {0,1} = 1¡å{1} [£N¬°ªÅ¶°] ¤@¯ë¨Ó»¡¡A¦pªG§Ú­Ì¤w¸gºc§@¶°n, ¨º»ò¥¦ªº«áÄ~¤¸(successor) n* ´N¬É©w¬°n¡å{n}¡C ¦b¤@¯ëªº¶°¦X½×¤½²z¨t²Î¤¤¡]¦pZFC¡^¤¤¦³¤@±ø¤½²z«OÃÒ³o­Óºc§@¹Lµ{¯à¤£Â_¦a©µÄò¤U¥h¡A¨Ã¥B©Ò¦³¥Ñ³oºc§@¤èªk±o¨ìªº¶°¦X¯àºc¦¨¤@­Ó¶°¦X¡A³o±ø¤½²zºÙ¬°µL½a¤½²z(Axiom of Infinity)(·íµM§Ú­Ì°²©w¤F¨ä¥L¤@¨Ç¤½²z¡]¦p¨Ã¶°¤½²z¡^¤w¸g«Ø¥ß¡C ¡eª`¡GµL½a¤½²z¬O¤@¨Ç©Ò¿×«DÅ޿誺¤½²z¡C¥¿¬O³o¨Ç¤½²z¨Ï±o¥HRussell ¬°¥NªíªºÅÞ¿è¥D¸q¾Ç¬£ªº¬Y¨Ç¥D±i¦b³ÌÄY®æªº·N¸q¤U¤£¯à¹ê²{¡C¡f ¸òþÓ§Ú­Ì«K¥iÀ³¥Î¥H¤Uªº©w²z¨Ó©w¸qÃö©ó¦ÛµM¼Æªº¥[ªk¡C ©w²z¡G©R"|N"ªí¥Ü¥Ñ©Ò¦³¦ÛµM¼Æºc¦¨ªº¶°¦X¡A¨º»ò§Ú­Ì¥i¥H°ß¤@¦a©w¸q¬M®gA¡G|N£A|N¡÷|N¡A¨Ï±o¥¦º¡¨¬¥H¤Uªº±ø¥ó¡G (1)¹ï©ó|N¤¤¥ô·Nªº¤¸¯Àx¡A§Ú­Ì¦³A(x,0) = x ¡F (2)¹ï©ó|N¤¤¥ô·Nªº¤¸¯Àx©My¡A§Ú­Ì¦³A(x,y*) = A(x,y)*¡C ¬M®gA´N¬O§Ú­Ì¥Î¨Ó©w¸q¥[ªkªº¬M®g¡A§Ú­Ì¥i¥H§â¥H¤Wªº±ø¥ó­«¼g¦p¤U¡G (1) x+0 = x ¡F(2) x+y* = (x+y)*¡C ²{¦b¡A§Ú­Ì¥i¥Hµý©ú"1+1 = 2" ¦p¤U¡G 1+1 = 1+0* (¦]¬° 1:= 0*) = (1+0)* (®Ú¾Ú±ø¥ó(2)) = 1* (®Ú¾Ú±ø¥ó(1)) = 2 (¦]¬° 2:= 1*) ¡eª`¡GÄY®æ¨Ó»¡§Ú­Ì­n´©¥Î»¼Âk©w²z(Recursion Theorem)¨Ó«OÃÒ¥H¤Wªººc§@¤èªk¬O§´·íªº¡A¦b¦¹¤£ÂØ¡C] 1+ 1= 2"¥i¥H»¡¬O¤HÃþ¤Þ¤J¦ÛµM¼Æ¤Î¦³Ãöªº¹Bºâ«á"¦ÛµM"±o¨ìªºµ²½×¡C¦ý±q¤Q¤E¥@¬ö°_¼Æ¾Ç®a¶}©l¬°«Ø°ò©ó¹ê¼Æ¨t²Îªº¤ÀªR¾Ç«Ø¥ßÄY±KªºÅÞ¿è°ò¦«á¡A¤H­Ì¤~¯u¥¿¼fµøÃö©ó¦ÛµM¼Æªº°ò¦°ÝÃD¡C§Ú¬Û«H³o¤è­±³Ì"¸g¨å"ªºµý©úÀ³­nºâ¬O¥X²{¦b¥ÑRussell©MWhitehead¦XµÛªº"Principia Mathematica"¤¤ªº¨º­Ó¡C §Ú­Ì¥i¥H³o¼Ëµý©ú"1+1 = 2"¡G ¡@­º¥ý¡A¥i¥H±Àª¾¡G £\£`¢°<=> (£Ux)(£\={x}) £]£`2 <=> (£Ux)(£Uy)(£]={x,y}.&.~(x=y)) £i£`1+1 <=> (£Ux)(£Uy)(£]={x}¡å{y}.&.~(x=y)) ©Ò¥H¹ï©ó¥ô·Nªº¶°¦X£^¡A§Ú­Ì¦³ ¡@£^£`1+1 <=>(£Ux)(£Uy)(£^={x}¡å{y}.&.~(x=y)) <=>(£Ux)(£Uy)(£^={x,y}.&.~(x=y)) <=> £^£`2 ®Ú¾Ú¶°¦X½×ªº¥~©µ¤½²z(Axiom of Extension)¡A§Ú­Ì±o¨ì1+1 = 2¡C] The proof starts from the Peano Postulates, which define the natural numbers N. N is the smallest set satisfying these postulates: P1. 1 is in N. P2. If x is in N, then its "successor" x' is in N. P3. There is no x such that x' = 1. P4. If x isn't 1, then there is a y in N such that y' = x. P5. If S is a subset of N, 1 is in S, and the implication (x in S => x' in S) holds, then S = N. Then you have to define addition recursively: Def: Let a and b be in N. If b = 1, then define a + b = a' (using P1 and P2). If b isn't 1, then let c' = b, with c in N (using P4), and define a + b = (a + c)'. Then you have to define 2: Def: 2 = 1' 2 is in N by P1, P2, and the definition of 2. Theorem: 1 + 1 = 2 Proof: Use the first part of the definition of + with a = b = 1. Then 1 + 1 = 1' = 2 Q.E.D. Note: There is an alternate formulation of the Peano Postulates which replaces 1 with 0 in P1, P3, P4, and P5. Then you have to change the definition of addition to this: Def: Let a and b be in N. If b = 0, then define a + b = a. If b isn't 0, then let c' = b, with c in N, and define a + b = (a + c)'. You also have to define 1 = 0', and 2 = 1'. Then the proof of the Theorem above is a little different: Proof: Use the second part of the definition of + first: 1 + 1 = (1 + 0)' Now use the first part of the definition of + on the sum in parentheses: 1 + 1 = (1)' = 1' = 2 Q.E.D. ================================




¹p¹F³¡«Î½×¾Â
³»³¡
[¼s§i]
²l¤Ö
ºÞ²z­û
Rank: 10Rank: 10Rank: 10


UID 24
ºëµØ 0
¿n¤À 2673
©«¤l 2304
²{ª÷ 946
¦s´Ú 2
¾\ŪÅv­­ 255
µù¥U 2005-3-13
ª¬ºA Â÷½u
µoªí©ó 2006-4-4 20:56  ¸ê®Æ ¤å¶° µu®ø®§ 
¼M,«§¾¤¬[!?
³»³¡
[¼s§i]
µL¼C¤M«È
Á`ª©¥D
Rank: 9Rank: 9Rank: 9
=Liv=


UID 3316
ºëµØ 1
¿n¤À 4605
©«¤l 3171
²{ª÷ 43732
¦s´Ú 90320797
¾\ŪÅv­­ 101
µù¥U 2005-8-29
¨Ó¦Û ¦w¼wµáº¸²y³õ
ª¬ºA Â÷½u
µoªí©ó 2006-4-4 21:00  ¸ê®Æ ¤å¶° µu®ø®§ 


QUOTE:
Originally posted by ²l¤Ö at 2006-4-4 08:56 PM: ¼M,«§¾¤¬[!?

«YÊ\¨Ìd¯«¤H¥ýÚ»±o©ú~
³»³¡
[¼s§i]
qwerty0998
°ª¯Å·|­û
Rank: 4


UID 19318
ºëµØ 0
¿n¤À 689
©«¤l 168
²{ª÷ 12
¦s´Ú 660
¾\ŪÅv­­ 20
µù¥U 2006-3-19
¨Ó¦Û ¤TºûªÅ¶¡¦t©z»Èªe¨t¤Ó¶§¨t
ª¬ºA Â÷½u
µoªí©ó 2006-4-8 15:30  ¸ê®Æ ¤å¶° µu®ø®§ 
§ÚÚ»¹L©O¸Ü1-1=0¦ý1-1=1¨â­Óµª®×³£±o ¤S«Y¦n¦ü¤W­±ËÝ,¦ý«Y­ø°O±o Ãä­Óݯ¨ì­Ú§ÚÚ»§r




[color=orange]§Æ±æ¤j®a³£¶}¤ß[/color] [img]http://scd.mm-c1.yimg.com/image/1230832131[/img]
³»³¡
[¼s§i]
jasonkk0104
¤¤¯Å·|­û
Rank: 3Rank: 3


UID 7843
ºëµØ 0
¿n¤À 341
©«¤l 153
²{ª÷ 2
¦s´Ú 2
¾\ŪÅv­­ 20
µù¥U 2005-11-19
ª¬ºA Â÷½u
µoªí©ó 2006-5-25 18:58  ¸ê®Æ ¤å¶° µu®ø®§ 
·R¦]´µ©Z³£¥¼¥²©ú
³»³¡
[¼s§i]
ª¢¥J
°ª¯Å·|­û
Rank: 4



UID 22244
ºëµØ 0
¿n¤À 566
©«¤l 239
²{ª÷ 2
¦s´Ú 2
¾\ŪÅv­­ 20
µù¥U 2006-4-11
ª¬ºA Â÷½u
µoªí©ó 2006-5-25 19:16  ¸ê®Æ ¤å¶° µu®ø®§ 


QUOTE:
Originally posted by jasonkk0104 at 2006-5-25 18:58: ·R¦]´µ©Z³£¥¼¥²©ú

§A¥sÊ\µf¥Í ¤ñÊ\Ú»¤U Ú»¤UÊ\©ú­ø©úlow :013::013:
³»³¡
[¼s§i]
¶Ì¥J¶¯ (§Æ±æ¦b©ú¤Ñ)
ª©¥D
Rank: 8Rank: 8


UID 14846
ºëµØ 0
¿n¤À 1052
©«¤l 844
²{ª÷ 3602
¦s´Ú 2
¾\ŪÅv­­ 100
µù¥U 2006-2-14
¨Ó¦Û ¤Ñ¤ô³ò
ª¬ºA Â÷½u
µoªí©ó 2006-5-25 19:23  ¸ê®Æ ¥D­¶ ¤å¶° µu®ø®§  ICQ ª¬ºA
-0-§ÚÚ»­ø©ú
³»³¡
[¼s§i]
~Karen~
¤¤¯Å·|­û
Rank: 3Rank: 3



UID 22510
ºëµØ 0
¿n¤À 331
©«¤l 182
²{ª÷ 2
¦s´Ú 2
¾\ŪÅv­­ 20
µù¥U 2006-4-13
¨Ó¦Û ¤EÀs
ª¬ºA Â÷½u
µoªí©ó 2006-5-26 17:01  ¸ê®Æ ¤å¶° µu®ø®§ 
¦n½ÆÂø...........=.=
³»³¡
[¼s§i]
¥j¥Ð
VIP·|­û
Rank: 6Rank: 6
ÀY¸¹®·¤â!


UID 86
ºëµØ 0
¿n¤À 385
©«¤l 1590
²{ª÷ 2
¦s´Ú 2
¾\ŪÅv­­ 50
µù¥U 2005-3-21
¨Ó¦Û ­ì¤l
ª¬ºA Â÷½u
µoªí©ó 2006-5-26 17:14  ¸ê®Æ ¤å¶° µu®ø®§ 


QUOTE:
Originally posted by jasonkk0104 at 2006-5-25 18:58: ·R¦]´µ©Z³£¥¼¥²©ú

=.=©Od¹ï·R¦]´µ©Z¨ÓÁ¿easy¨ìÃz°Õ~ Ê\³s®É¶¡«YµLµ´¹ï¬J©w¸q³£¥i¥H¥Î¼Æ­p±o¥X... ÃÒ©úÊ\¯u«Y·ö½u.....





³»³¡
[¼s§i]
ª¢¥J
°ª¯Å·|­û
Rank: 4



UID 22244
ºëµØ 0
¿n¤À 566
©«¤l 239
²{ª÷ 2
¦s´Ú 2
¾\ŪÅv­­ 20
µù¥U 2006-4-11
ª¬ºA Â÷½u
µoªí©ó 2006-5-26 17:19  ¸ê®Æ ¤å¶° µu®ø®§ 
§Ú¦ô·R¦]´µ©ZIQ¦³250 =v=
³»³¡
[¼s§i]
 

 

³Ì·s¥DÃD ³Ì·s¦^ÂÐ ¼öªù¸ÜÃD
·®ªL§ä¤p©j¤@©]±¡¥]©]«tŦ ...
´ô«n§ä¤p©j¤p©f¬ü¤k«O°·«ö¼¯¤@ ...
韩«°§ä¤p©j¬ü¤k学 ...
®æ尔¤ì§ä¤p©j«O°·«ö¼¯¥þ ...
¦èÉr§ä¤p©j¦èÉr§ä¤p©j联 ...
达¦{§ä¤p©j达¦{§ä ...
ªQ¼ï§ä¬ü¤k学¥Í©f¤p©j«O ...
¤Ú¤¤§ä¬ü¤k护¤hªÅ©j­Ý& ...
¶®¦w§ä个¤p©j¥þ®M«O°·«ö ...
¦è©÷¤p©j¥]©]§ä«ö¼¯ªA务 ...
­þ¨½§ä¤p©j¤@©]±¡红 ...
¬Ü¤s­þ¨½¦³§ä¤p©f¬ü¤k学 ...
乐¤s­þ¨½¦³§ä¬ü¤k¤p©f¥] ...
资阳­þ¨½¦³§ä°s©± ...
©y宾°s©±§ä¤T³­¤p©j«ö¼¯ ...
泸¦{§ä¤p©j´©¥æ学 ...
广¦w§ä¤p©j¤@©]±¡¥]©]«t ...
®g¬x§ä¤p©j¤p©f¬ü¤k«O°·«ö¼¯¤@ ...
¹EÉr§ä¤p©j¬ü¤k学¥Í©f¥þ ...
阆¤¤§ä¤p©j«O°·«ö¼¯¥þ®M ...
«n¥R§ä¤p©j«n¥R§ä¤p©j联 ...
ºµ¿ß³Ì¤jªºÄ@±æ¬O«§©O?
¡i¥þ´ä¿W®a³Ì»ô¡j¯º½Í¼sªF¸Ü( ...
³@¥Ð²[¦¿区§ä¤p©j¤p©f¬ü ...
¦ê 2017-12-01 °ª­µ½è@¦Ê«×+M ...
¬[¶Õ°ó 2009-02-03
ÁÙ¦³¤H¦b³o­Ó½×¾Â¶Ü??
HOT~VIP¥j´b¤H¥Í¨pªA!
¡i¤w­«·s¤W¶Ç¡j903 ¤f¤ô¦h¹L®ö ...
µl¤l¥j´b¤H¥ÍN-AGE
ºÎıªº¶Àª÷®É¬q
¡]¤w§ó¥¿¡^903 ¤f¤ô¦h¹L®öªá ...
Stephy¤¤¤­²¦·~
¹Ã¤k»P³¢ªä¨ä...
¡i¯º½Í¼sªF¸Ü¡j1-50¶°¤U¸üª©¥»
2013¦~«×¥wo¦v¼Ö¾Â¬y¦æº]¹{¼ú ...
¡i¤À¨É¡jÀs¤ý¶Ç»¡¡i¤U¸üÂI¡j
¡i¤À¨É¡jÀs¤ý¶Ç»¡¡i§ð²¤ + ¤w ...
³Ì¨Î°·±d¶¼«~¼s§i¤ù
¤À¨É-µL¦W¬Ûï Facebook msn ...
¡]§i§O©«¡^903 ¤@¤K¤C¤G¹Cªá¶é ...
903 ¤@¤K¤C¤G¹Cªá¶é 2013-04- ...
ºµ¿ß³Ì¤jªºÄ@±æ¬O«§©O?
¡i¥þ´ä¿W®a³Ì»ô¡j¯º½Í¼sªF¸Ü( ...
³@¥Ð²[¦¿区§ä¤p©j¤p©f¬ü ...
¦ê 2017-12-01 °ª­µ½è@¦Ê«×+M ...
¬[¶Õ°ó 2009-02-03
ÁÙ¦³¤H¦b³o­Ó½×¾Â¶Ü??
HOT~VIP¥j´b¤H¥Í¨pªA!
¡i¤w­«·s¤W¶Ç¡j903 ¤f¤ô¦h¹L®ö ...
µl¤l¥j´b¤H¥ÍN-AGE
ºÎıªº¶Àª÷®É¬q
¡]¤w§ó¥¿¡^903 ¤f¤ô¦h¹L®öªá ...
Stephy¤¤¤­²¦·~
¹Ã¤k»P³¢ªä¨ä...
¡i¯º½Í¼sªF¸Ü¡j1-50¶°¤U¸üª©¥»
2013¦~«×¥wo¦v¼Ö¾Â¬y¦æº]¹{¼ú ...
¡i¤À¨É¡jÀs¤ý¶Ç»¡¡i¤U¸üÂI¡j
¡i¤À¨É¡jÀs¤ý¶Ç»¡¡i§ð²¤ + ¤w ...
³Ì¨Î°·±d¶¼«~¼s§i¤ù
¤À¨É-µL¦W¬Ûï Facebook msn ...
¡]§i§O©«¡^903 ¤@¤K¤C¤G¹Cªá¶é ...
903 ¤@¤K¤C¤G¹Cªá¶é 2013-04- ...
·í«e®É°Ï GMT+8, ²{¦b®É¶¡¬O 2024-11-5 19:31

    本论坛支付平台由支付宝提供
携手打造安全诚信的交易社区 Powered by Discuz! 5.0.0  © 2001-2006 Comsenz Inc.
Processed in 0.862636 second(s), 12 queries , Gzip enabled

²M°£ Cookies - Ápô§Ú­Ì - ºô­¶³]­p - Archiver - WAP