ÂI¸Ñ1+1=2??
1+1=¡H
=2
¸ê®Æ¦p¤U¡G
¥H«á¢°¡Ï¢°¬°¤°»ò·|µ¥©ó¢±¡@¤j¾Ç·|¦³ÃÒ©ú¡@³æ³æ¤@ÓÃÒ©ú¥i¥HÅý§A§Û¨ì¤â³n
¤£n¤p¬Ý³oÓ¤½¦¡¡A1+1=2µn¤W¬ì¾Ç¬É¡¥³Ì°¶¤j¤½¦¡¡¦¤§¤@¡C
¦³¤£¤Ö¤H³£¥i¯à´¿¸g°Ý¹L"¬°¦ó1+1=2¡H"³oӬݦü¦h¾l(!?)ªº°ÝÃD¡C²{¦b§Ú¹Á¸Õ¦V¦³¿³½ìªººô¤Í²³æ¤¶²Ð¤@¤U«ç¼Ë¦b¤½²z¶°¦X½×ªº®Ø¬[¤ºµý©ú "1+1=2& quot; ³o¥y¹ïµ´¤j¦h¼Æ¤H¨Ó»¡³£"ÄA¼³¤£¯}"ªº¼Æ¾Çz¥y¡Cº¥ý¡A¤j®anª¾¹D¦b¶°¦X½×ªº¯ßµ¸¤¤§ÚÌ°Q½×ªº¹ï¶H¬O¦U¦¡¦U¼Ëªº¶°¦X¡]©ÎÃþ (class)¡A¥¦Ì©M¶°¦Xªº¤À§O¦b¦¹¤£ÂØ¡^¡A¬G¦¹§Ú̸g±`¸I¨ìªº¦ÛµM¼Æ¦b³o¸Ì¤]¬O¥H¶°¦X¡]©ÎÃþ¡^¨Ó©w¸q¡C¨Ò¦p§ÚÌ¥i¥Î¥H¤Uªº¤è¦¡¬É©w0¡A1©M2(eg. qv. Quine, Mathematical Logic, Revised Ed., Ch. 6, ¡±43-44)¡G
0 := {x: x ={y: ~(y = y)}}
1 := {x: y(y£`x.&.x\{y}£`0)}
2 := {x: y(y£`x.&.x\{y}£`1)}
¡e¤ñ¦p»¡¡A¦pªG§Ú̱q¬YÓÄÝ©ó¢°³oÓÃþªº¤À¤l®³¥h¤@Ó¤¸¯Àªº¸Ü¡A¨º»ò¸Ó¤À¤l«K·|Åܦ¨0ªº¤À¤l¡C´«¨¥¤§¡A¢°´N¬O¥Ñ©Ò¦³¥u¦³¤@Ó¤¸¯ÀªºÃþ²Õ¦¨ªºÃþ¡C¡f
²{¦b§Ṳ́@¯ë±Ä¥Î¥Dn¥Ñ von Neumann ¤Þ¤Jªº¤èªk¨Ó¬É©w¦ÛµM¼Æ¡C¨Ò¦p¡G
0:= £N, 1:= {£N} = {0} =0¡å{0},
2:= {£N,{£N}} = {0,1} = 1¡å{1}
[£N¬°ªÅ¶°]
¤@¯ë¨Ó»¡¡A¦pªG§Ṳ́w¸gºc§@¶°n, ¨º»ò¥¦ªº«áÄ~¤¸(successor) n* ´N¬É©w¬°n¡å{n}¡C
¦b¤@¯ëªº¶°¦X½×¤½²z¨t²Î¤¤¡]¦pZFC¡^¤¤¦³¤@±ø¤½²z«OÃÒ³oÓºc§@¹Lµ{¯à¤£Â_¦a©µÄò¤U¥h¡A¨Ã¥B©Ò¦³¥Ñ³oºc§@¤èªk±o¨ìªº¶°¦X¯àºc¦¨¤@Ó¶°¦X¡A³o±ø¤½²zºÙ¬°µL½a¤½²z(Axiom of Infinity)(·íµM§ÚÌ°²©w¤F¨ä¥L¤@¨Ç¤½²z¡]¦p¨Ã¶°¤½²z¡^¤w¸g«Ø¥ß¡C
¡eª`¡GµL½a¤½²z¬O¤@¨Ç©Ò¿×«DÅ޿誺¤½²z¡C¥¿¬O³o¨Ç¤½²z¨Ï±o¥HRussell ¬°¥NªíªºÅÞ¿è¥D¸q¾Ç¬£ªº¬Y¨Ç¥D±i¦b³ÌÄY®æªº·N¸q¤U¤£¯à¹ê²{¡C¡f
¸òþÓ§ÚÌ«K¥iÀ³¥Î¥H¤Uªº©w²z¨Ó©w¸qÃö©ó¦ÛµM¼Æªº¥[ªk¡C
©w²z¡G©R"|N"ªí¥Ü¥Ñ©Ò¦³¦ÛµM¼Æºc¦¨ªº¶°¦X¡A¨º»ò§ÚÌ¥i¥H°ß¤@¦a©w¸q¬M®gA¡G|N£A|N¡÷|N¡A¨Ï±o¥¦º¡¨¬¥H¤Uªº±ø¥ó¡G
(1)¹ï©ó|N¤¤¥ô·Nªº¤¸¯Àx¡A§Ú̦³A(x,0) = x ¡F
(2)¹ï©ó|N¤¤¥ô·Nªº¤¸¯Àx©My¡A§Ú̦³A(x,y*) = A(x,y)*¡C
¬M®gA´N¬O§Ú̥Ψөw¸q¥[ªkªº¬M®g¡A§ÚÌ¥i¥H§â¥H¤Wªº±ø¥ó«¼g¦p¤U¡G
(1) x+0 = x ¡F(2) x+y* = (x+y)*¡C
²{¦b¡A§ÚÌ¥i¥Hµý©ú"1+1 = 2" ¦p¤U¡G
1+1
= 1+0* (¦]¬° 1:= 0*)
= (1+0)* (®Ú¾Ú±ø¥ó(2))
= 1* (®Ú¾Ú±ø¥ó(1))
= 2 (¦]¬° 2:= 1*)
¡eª`¡GÄY®æ¨Ó»¡§ÚÌn´©¥Î»¼Âk©w²z(Recursion Theorem)¨Ó«OÃÒ¥H¤Wªººc§@¤èªk¬O§´·íªº¡A¦b¦¹¤£ÂØ¡C]
1+ 1= 2"¥i¥H»¡¬O¤HÃþ¤Þ¤J¦ÛµM¼Æ¤Î¦³Ãöªº¹Bºâ«á"¦ÛµM"±o¨ìªºµ²½×¡C¦ý±q¤Q¤E¥@¬ö°_¼Æ¾Ç®a¶}©l¬°«Ø°ò©ó¹ê¼Æ¨t²Îªº¤ÀªR¾Ç«Ø¥ßÄY±KªºÅÞ¿è°ò¦«á¡A¤H̤~¯u¥¿¼fµøÃö©ó¦ÛµM¼Æªº°ò¦°ÝÃD¡C§Ú¬Û«H³o¤è±³Ì"¸g¨å"ªºµý©úÀ³nºâ¬O¥X²{¦b¥ÑRussell©MWhitehead¦XµÛªº"Principia Mathematica" ;;;;;¤¤ªº¨ºÓ¡C
§ÚÌ¥i¥H³o¼Ëµý©ú"1+1 = 2"¡G
¡@º¥ý¡A¥i¥H±Àª¾¡G
£\£`¢°<=> (£Ux)(£\={x})
£]£`2 <=> (£Ux)(£Uy)(£]={x,y}.&.~(x=y))
£i£`1+1 <=> (£Ux)(£Uy)(£]={x}¡å{y}.&.~(x=y))
©Ò¥H¹ï©ó¥ô·Nªº¶°¦X£^¡A§Ú̦³
¡@£^£`1+1
<=>(£Ux)(£Uy)(£^={x}¡å{y}.&.~(x=y))
<=>(£Ux)(£Uy)(£^={x,y}.&.~(x=y))
<=> £^£`2
®Ú¾Ú¶°¦X½×ªº¥~©µ¤½²z(Axiom of Extension)¡A§Ú̱o¨ì1+1 = 2¡C]
ÃÒ©ú: 1+1=2
1¥ýÁA¸Ñpeano ¤½³]¡G©Ò¿×¦ÛµM¼Æ,´N¬Oº¡¨¬¤U¦C±ø¥ó,
a.¤@¶°¦XN ¤¤,¦³¤¸¯Àn,¤Î«áÄ~¤¸¯Àn+,n+»Pn ¹ïÀ³.
b.¤¸¯Àe ¥²©wÄÝ©óN ¤¤.
c.¤¸¯Àe ¦bN ¤¤¤£¬°¥ô¤@¤¸¯Àªº«áÄ~¤¸¯À.
d.N ¤¤ªº¤¸¯À,a+=b+«ha=b.(¤¸¯À°ß¤@)
e.(Âk¯Ç¤½³])S ¬°N ªº¤l¶°,e ÄÝ©óS,n ÄÝ©óS,n+¤]ÄÝ©óS.¨º»òS=N.
N ´N¬O§ÚÌ»¡ªº¦ÛµM¼Æ¶°¦X.
¨ä¤¤§Ú̳W©we:=1, e+:=2, (e+)+:=3,.....¥H¦¹Ãþ±À.
2. ¦A¨Ó©w¸q¥[ªk,
¥[ªk(+)¬°¤@¨ç¼Æ,³o¨ç¼Æº¡¨¬¨âÓ±ø¥ó
1.(+)(n,e)=n+ ¼g¦¨¤j®a¼ô±xªº¦¡¤l1.n(+)e=n+
2.(+)(n,m+)=((+)(n,m ))+ 2.n(+)m+=(n(+)m)+
º¡¨¬¤W±±ø¥óªº¨ç¼Æ(+),§Ú̺٬°¥[ªk+.(+):=+
º¡¨¬³o¨â±ø¥óªº¨ç¼Æ¬O¥i¥HÃÒ©ú¦s¦b¥B°ß¤@¡GÃÒ©ú¦p¤U
¦]¬°(+)(e,e)=e+
e(+)e=e+
©Ò¥H1+1=2 ±oÃÒ.
¦s¦b¡G
e, e+ ,(e+)+,¡K¡K §Y©Ò¦³¦ÛµM¼Æ
°ß¤@¡G
n N " Î ¡A
+(n,e)=n+
+(n,e+)=(+(n,e))+
+(n,e+)+)=¡K¡K¡K
¬G(+)¦s¦b¥B°ß¤@
¤WzÃÒ©ú½¦¨¥Õ¸Ü¤å¦p¤U¡G
¦ÛµM¼Æ¨t¨Ì¥[ªk¹Bºâ¤À§O¬O¡G1¡A1+¡A(1+)+¡A¡K¡K¡C¦Ó³o¨Ç1+¡A¡]1+¡^+¡A¡K´N¥Î²Å¸¹2¡A3¡A¡K
ªí¥Ü¡A©Ò¥H1 + 1«üªº¬O1«á±¨º¤@ӼƦr¡A¤]´N¬O1+¡A¦ÛµM´N¬O2¡C
¬°¤°»ò·|¦³Peano ¤½³]¡A¤Î©w¸q¥[ªk¡A³o°_·½©ó¤Q¤E¥@¬ö¥½¡A¤G¤Q¥@¬öªì¡AHibert¡ABrouwer¡A¦]ª«²z¤W¯U¸q¬Û¹ï½×¡A¤Î¶q¤l½×±À½¤Fª«²z°ò¦¡A¦Ó¼Æ¾Ç®a̦]¦¹·QÃÒ©ú¡A¼Æ¾Ç¬O¦³°í©T°ò¦¡A¬O¤£Åܪº¯u²z¡C©Ò¥H§Æ±æ¯à±qÅÞ¿è¤W«Ø¥ß¤@Ó§¹¾ã¡BÄY±Kªº°ò¦¡A©ó¬O²Ä¤@Ó·íµM°w¹ï¦ÛµM¼Æ¨t¶}©l¡A§Æ±æ¯à¹³¼Ú¤ó´X¦ó¤@¼Ë¡A±q°ò¥»¤½³]¡A¸g¥ÑÅÞ¿è´N¥i¥H±o¨ì§¹¾ãªº¦ÛµM¼Æ¨t©Ê½è¡A©Ò¥HÂkµ²¥XPeano ¤Ó¤½³]¡]¨ä¹ê«á¤H§â¥¦¶i¤@¨BÂkµ²¦¨¤TÓ¡^¡A¦Óù¯À»P¥Lªº¦Ñ®vÃh®ü¼w¦X¼g<<¼Æ¾Çì²z>>¤T¤j¨÷¡A´N¬O°µ¤F¤@³¡¥÷¤u§@¡CHilbert ÀÀ¤F¤@³s¦êpµen§â¼Æ¾Çªº°ò¦Âà¤Æ¦¨ÅÞ¿è¡A³o¼Ë¤@¨Ó¡A¼Æ¾Ç®a´N¥i¥H«ÅºÙ¡u¼Æ¾Ç¬O¯u²z¡v¡C¤£©¯ªº¬O¡A1929¦~Godel 23·³®ÉÃÒ©ú¤F¤@Ó©w²z¡G
¤£§¹¥þ©Ê©w²z¡G
¦pªG¦³¤@Ó¨t²Î¥]§tºâ³N¡A¦Ó¥B³o¤@¨t²Îªº°ò¥»°²³]¨Ã¤£·|¤¬¬Û¥Ù¬Þ¡A¨º»ò³oÓ¨t²Î¤¤¤@©w¦s¦b¤@Ó©RÃD¡A³o¤@Ó©RÃDªºªÖ©w©Î§_©w³£µLªkÃÒ©ú¡C©Ò¥H¼Æ¾Ç¨Ã¤£¥u¬OÅÞ¿è¡C·íµM¡u1 + 1 = 2¡vªºÃÒ©ú¬O§_«Ü¦³·N¸q¡A¥i¥H±qGodelªº©w²z¨Ó¬Ý¬Ý¡C
²³æªº¤èªk¡G
1+1=2¡C¡C¡C(1+1)-1=2-1¡C¡C¡C1=1¦¨¥ß
1+1>2¡C¡C¡C(1+1)-1>2-1¡C¡C¡C1>1¤£¦¨¥ß
1+1<2¡C¡C¡C(1+1)-1<2-1¡C¡C¡C1<1¤£¦¨¥ß
|